Future Forecasting of Grain Maize Production in Türkiye with ARIMA Model


DOI:
https://doi.org/10.5281/zenodo.14787149Anahtar Kelimeler:
Türkiye, Mısır Üretimi, Gelecek Tahmini, ARIMAÖzet
Maize is an important agricultural product in human and animal nutrition. Its importance is increasing day by day due to its use as raw material in agriculture-based an industry and the added value it produces. The strategic importance of maize due to these reasons has led to the expansion of maize production areas and an increase in production amounts in many countries. This study aims to analyze the changes in grain maize production in Türkiye from past to present and to predict future production trends. Maize is a strategic agricultural product due to its importance in human and animal nutrition, industrial uses and economic value. In this study, changes in grain maize production in Türkiye are analyzed using FAO and TurkStat data covering the period 1961-2023. ARIMA model (0,2,1), one of the Box-Jenkins methods, is preferred for future production projections. Analyses were performed with EVIEWS 10.0 software. In time series analysis, non-stationary data were made stationary by differencing methods. Model selection is based on information criteria and statistical significance tests, and the appropriateness of the ARIMA (0,2,1) model is determined. Forecasting results predict that grain maize production in Türkiye will increase by an annual average of 12.6% between 2024 and 2028. The production amount is estimated to reach 10.91 million tonnes in 2028. These findings indicate that the upward trend in maize production will continue. Research findings provide important information in terms of formulating agricultural policies and supporting farmers' production planning. However, it is emphasized that factors such as climate change, agricultural incentives, infrastructure facilities and market conditions should also be taken into account. By focusing on grain maize production in Türkiye, the study aims to fill the gap in the literature and provide basis for future studies.
Referanslar
Babaoğlu, M. (2024, Dec 25). Mısır Tarımı. https://arastirma.tarimorman.gov.tr/ttae/Sayfalar/Detay. aspx?SayfaId=89
Bawdekar, A. A., Prusty, B. R., & Bingi, K. (2022). Sensitivity Analysis of Stationarity Tests’ Outcome to Time Series Facets and Test Parameters. Mathematical Problems in Engineering, 2022(1), 2402989. https://doi.org/10.1155/2022/2402989
Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124 104268644
Çağlayan, E., & Saçaklı, İ. (2006). Satın Alma Gücü Paritesinin Geçerliliğinin Sıfır Frekansta Spektrum Tahmincisine Dayanan Birim Kök Testleri ile İncelenmesi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20(1), 121–137.
Caner, C. B., & Engindeniz, S. (2020). Türkiye’de Pamuk Üretiminin ARIMA Modeli İle Tahmini. Tarım Ekonomisi Dergisi, 26(1), 63-70. https://doi.org/10.24181/tarekoder.681079
Celik, S. (2016). Forecasting Production of Some Cereal in Turkey by Time Series Analysis. International Journal of Information Research and Review, 3(10), 2887–2897.
Chen, C.-F., Chang, Y.-H., & Chang, Y.-W. (2009). Seasonal ARIMA Forecasting of Inbound Air Travel Arrivals to Taiwan. Transportmetrica, 5(2), 125–140. https://doi.org/10.1080/18128600802591210
de Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean Absolute Percentage Error for regression models. Neurocomputing, 192, 38–48. https://doi.org/10.1016/j.neucom.2015.12.114
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
FAOSTAT. (2025, Dec 20). Crops and Livestock Products. https://www.fao.org/faostat/en/#data/QCL
Gözel, Y. Ş. (2024). Türkiye’de Uygulanan Tarım Politikalarının Mısır Üretimi Üzerine Etkileri: Karaman İli Örneği [Yüksek Lisans Tezi]. Karamanoğlu Mehmetbey Üniversitesi Sosyal Bilimler Enstitüsü.
Hyndman, R. J., & Athanasopoulos, G. (2018, 2025 Dec 15). Forecasting: Principles and Practice. https://otexts.com/fpp2/
Khalili, M. Y. (2023). Türkiye’de Pamuk Üretiminde Destekleme Politikalarının Üretime Olan Etkisi ve Gelecek Öngörüsü [Yüksek Lisans Tezi]. Fen Bilimleri Enstitüsü Harran Üniversitesi.
Khalili, M. Y., Palabıçak, M. A., & Sevinç, M. R. (2024). Türkiye’de Pamuk Üretimine Yönelik Destekleme Politikalarının Etkinliğinin Belirlenmesi: 2007-2022 Dönemi. International Journal of Social and Humanities Sciences Research, 11(111), 1759–1767. https://doi.org/10.5281/zenodo.13864106
Ma, L., Hu, C., Lin, R., & Han, Y. (2018). ARIMA Model Forecast Based on EViews Software. IOP Conference Series: Earth and Environmental Science, 208, 012017. https://doi.org/10.1088/1755-1315/208/1/012017
Makridakis, S., & Hibon, M. (1997). ARMA Models and the Box–Jenkins Methodology. Journal of Forecasting, 16(3), 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
Nalici, M. E., Soylemez, İ., & Ünlü, R. (2024). Türkiye’de Tahıl Üretiminin Tahminlemesi: Karşılaştırmalı Analiz. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(2), 288-303.
Naylor, T. H., Seaks, T. G., & Wichern, D. W. (1972). Box-Jenkins Methods: An Alternative to Econometric Models. International Statistical Review / Revue Internationale de Statistique, 40(2), 123–137. https://doi.org/10.2307/1402755
Paksoy, M., & Ortasöz, N. (2018). Kahramanmaraş İli Pazarcık İlçesinde Mısır Üretim Faaliyetinin Ekonomik Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21, 95–101. https://doi.org/10.18016/ksutarimdoga.vi.472962
Palabıçak, M. A., & Binici, T. (2023). Investigating The Effects of Dynamics and Crises on Livestock Production in Developing Countries by Using Time Series and Future Forecasting With ARIMA; A Case Study of Sheep Production in Türkiye. Applied Ecology and Environmental Research, 21(6), 5785–5806. https://doi.org/10.15666/aeer/2106_57855806
Shen, Y., & Wirjanto, T. S. (2019). Stationarity as a Path Pproperty. Probability and Mathematical Statistics, 39(2), 403-422. https://doi.org/10.19195/0208-4147.39.2.9
Shumway, R. H., & Stoffer, D. S. (2017). Review of Time Series Analysis and Its Applications With R Examples. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 800–802. https://doi.org/10.1080/10705511.2017.1299578
Tipi, T., & Erdal, B. (2021). The Forecast of Corn Production Fields in Turkey with Arima Model. Romanian Agricultural Research, 38, 479–485. https://doi.org/10.59665/rar3850
TÜİK. (2024, Dec 22). Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111
Ulaş, Z. M. (2023). Türkiye’de Nohut Üretiminin Dünü, Bugünü ve Yarını [Yüksek Lisans Tezi]. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 International Journal of Social and Humanities Sciences Research (JSHSR)

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.